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Abstract

The latent space model (LSM) for network data is a generative probabilistic model that com-
bines a generalized linear model with a latent spatial embedding of the network. It has been
used to decrease error in the estimation of and inference regarding the effects of observed co-
variates. In applications of the LSM, it is assumed that the latent spatial embedding can control
for unmeasured confounding structure that is related to the values of edges in the network. As
far as we know, there has been no research that considers the LSM’s performance in adjusting
for unmeasured structure to reduce estimation and inferential errors. We investigate the LSM’s
performance via a Monte Carlo study. In the presence of an unmeasured covariate that can be
appropriately modeled using a latent space, estimation and inferential error remain high under
even moderate confounding. However, the prediction error of the LSM when unmeasured net-
work structure is present is substantially lower in most cases. We conclude that the LSM is
most appropriately used for exploratory or predictive tasks.1

1 Introduction

Inferential analysis of political network data has grown increasingly sophisticated in recent
years. Political networks scholars are well versed in the risks associated with ignoring unmodeled
network structure. Dependencies such as reciprocity, transitivity, and homophily—if not accounted
for—can lead to biased estimates and errors in hypothesis testing, much in the way that omitted
variable bias can affect results in conventional regression models (Ward, Siverson and Cao 2007;
Kinne 2014; Cranmer and Desmarais Accepted). A number of statistical modeling frameworks
have been proposed to account for confounding structure in network data that cannot be mod-
eled with observed covariates. These include the exponential random graph model (ERGM) (e.g.,
Lazer, Rubineau, Chetkovich, Katz and Neblo 2010; Cranmer and Desmarais 2011; Desmarais and
Cranmer 2012), the latent space model (LSM) (e.g., Ward, Siverson and Cao 2007; Ward and Hoff
2007; Kirkland 2012), and the stochastic actor oriented model (SAOM) (e.g., Berardo and Scholz
2010; Kinne 2014).

Despite their growing popularity, few studies exist that investigate the performance of these
models in adjusting for confounding network structure. The approach to adjusting for depen-
dencies in the two other models commonly used for network data—ERGM and SAOM—is quite

1This work was supported by National Science Foundation grants DGE-1144860, SES-1558661, SES-1619644,
and CISE-1320219. Any opinions, findings, and conclusions or recommendations are those of the authors and do not
necessarily reflect those of the sponsor.



similar to adjusting for confounding covariates in regression modeling. The researcher specifies
a set of dependencies that (s)he hypothesizes to be important in the generative model for the net-
work. These dependencies are then explicitly included in a model that simultaneously represents
the effects of observed covariates (Cranmer and Desmarais 2011). The LSM takes a different ap-
proach, which involves the incorporation of latent variables to model network structure. The LSM
has the advantage over ERGM and SAOM in that researchers need not develop a set of hypothe-
sized dependencies in order to model network structure that is not reflected in observed covariates.
However, this advantage hinges upon the capacity for the LSM to discover unmodeled structure
that could otherwise be attributed to the observed covariates (i.e., inferring confounding structure).
In the current study, we focus on the LSM, examining its performance in reducing estimation and
inferential errors regarding the effects of observed covariates, via adjustment for confounding net-
work structure.

1.1 Central Problem

Latent variable inference, generally conceived, presents the possibility of representing unmea-
sured data in statistical models. The LSM, introduced by Hoff, Raftery and Handcock (2002),
is used to estimate the effect of covariates in the presence of latent network structure. Here the
distance function |zi − zj | represents latent network structure as homophily with respect to latent
variables. The distance function is additively combined with a regression on observed dyadic co-
variates, xij , to form a linear predictor for tie prediction. As with a GLM, a link function, g−1,
maps this linear predictor to the appropriate edge distribution.

E(yij |xij) = g−1(α+ βxij − |zi − zj |)

However, it is unclear that the introduction of a latent space decreases the expected error for
the parameter(s) of interest when aspects of the network structure (e.g., homophily) that are un-
measured, are correlated with measured covariates. There are two reasons that using the LSM may
lead to increased error. First, the latent configurations inferred may result in a representation of the
network wherein a node’s position in the latent space is spurriously correlated with the observed
covariates, leading to reduced efficiency. Second, if the unobserved (i.e., latent) network structure
is truly correlated with the observed covariates, the unobserved structure that can be correlated with
the observed variable may be attributed to the observed variable, while the latent space parameters
are used to model other sources of variation.

2 Applications and Development of the Latent Space Model

The LSM has seen use in a variety of fields in which network data is common, particularly
the social sciences. The apparent appeal of the LSM appears to be driven primarily by the LSM’s
usefulness in modeling transitivity (i.e., clustering) and homophily, which are ubiquitous in social
networks. In political science the LSM and variations on the form developed in Hoff, Raftery
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and Handcock (2002) have been used to estimate the effect of democracy on the probability of a
militarized interstate dispute (Ward, Siverson and Cao 2007), the amount of portfolio investment
between states (Cao and Ward 2013), and the effect of multimember districts on the probability
of collaboration between state legislators in the United States (Kirkland 2012). Variations of the
LSM developed for networks measured over time have been applied to the study of international
trade, wherein the effects of various features of trading partners are estimated (Ward, Ahlquist and
Rozenas 2013). In ecology the LSM has been used to study the sociality of elephants (Vance,
Archie and Moss 2009) and orcas (Fearnbach, Durban, Ellifrit, Waite, Matkin, Lunsford, Peterson,
Barlow and Wade 2014), birds (Nomano, Browning, Savage, Rollins, Griffith and Russell 2015), to
discover ecological communities (Fletcher, Acevedo, Reichert, Pias and Kitchens 2011; Fletcher Jr,
Revell, Reichert, Kitchens, Dixon and Austin 2013), and to study food webs (Chiu and Westveld
2011). In epidemeology it has been used to identify clusters of infected persons for later isola-
tion (Zhang, Wang, Wang and Fang 2015) and to study patterns of interaction amongst physicians
(Paul, Keating, Landon and O’Malley 2014). In marketing and business research it has been used to
study inter-group trust (Dass and Kumar 2011), optimal bundling and pricing of goods and brands
for retailers (Dass and Kumar 2012). It has been used to describe topic-specific patterns of interac-
tion in e-mail communication networks (Krafft, Moore, Desmarais and Wallach 2012). Lastly, in
neuroscience it has been proposed as a method for modelling fMRI data (Simpson, Bowman and
Laurienti 2013).

Although the LSM is arguably most useful as an exploratory or predictive model (see Shmueli
(2010) for a discussion of the differences between predictive and explanatory modeling), it has
been applied in some cases to reduce estimation and/or inferential error with respect to the effects
of observed covariates. For example Ward, Siverson and Cao (2007), in a high profile example,
argue that the the LSM improves inference about the effects of democracy, international trade, and
participation in international organizations on the probability of inter-state conflict.

“The history of international disputes, and consequently the extant data on militarized
interstate disputes, is replete with . . . dependencies. We formally incorporate and es-
timate the extent of these . . . dependencies in our model of the Kantian peace in order
to more precisely determine the effects of the Kantian tripod on international conflict”
(Ward, Siverson and Cao 2007, p. 585)

Likewise, similar claims are made in Dorff and Ward (2013); Cao and Ward (2013); Ward,
Ahlquist and Rozenas (2013); Kirkland (2012).

“For the most part, however, most dyadic research in international relations ignores the
essential features of dyads in that they fail to satisfy the assumption of independence
or, by construction, have missing data but ignore its effects: both of these bias the
results in a fundamental way” (Dorff and Ward 2013, p. 2).

“This approach combines a network analysis with a standard-looking regression to
permit us to access the importance of our explanatory factors without having them
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biased by the interdependencies in the network we are studying” (Cao and Ward 2013,
p. 15).

“The presence of . . . dependence implies misspecification and a high likelihood of bias
in most current applications. Building on the latent space framework we model the
world trading system without assuming a particular network structure or the suffi-
ciency of particular network statistics” (Ward, Ahlquist and Rozenas 2013, p. 20).

“. . . the latent space model allows for the assessment of distance between two un-
connected actors while simultaneously controlling for the interdependence inherent in
network data. This interdependence in latent space positions allows the model to con-
trol for common network effects like reciprocity or transitivity that would ordinarily
bias results” (Kirkland 2012, p. 336).

The above examples are drawn from political science, but we see a similar logic for using the
LSM articulated in recent work in ecology by Nomano et al. (2015, p. 989).

“. . . can create artificially exaggerated synchrony rates regardless of motivation for
signaling, which can be modeled with a term known as “transitivity” in the social
network literature. A latent space model (Krivitsky et al. 2009) was used to exam-
ine the propensities for synchrony between helper males and the primary male while
accounting for the variability deriving from the transitivity.”

Though this list of quotations is by no means complete, the last example to which we point
comes from the business literature, and uses the bilinear form of the latent space model (Dass and
Kumar 2011, p. 7).

“This model controls for higher order team dynamics using the bilinear component
z′izj and also allows both trustor (xtor,i ) and trusted (xted,j ) characteristics to be
investigated along with the dyadic covariates (xd,i,j).”

If the LSM does reduce inferential/estimation error under certain conditions, it will serve as
a valuable general model for explanatory analysis of network data, especially since its use does
not require the researcher to specify a set of network dependencies from theory. However, as
far as we know, there has been no research into the performance of the LSM in adjusting for
confounding network structure. Additionally, the predictive performance of the LSM has only
seen limited evaluation (Hoff, Raftery and Handcock 2002), despite having been used for model
selection (Ward, Ahlquist and Rozenas 2013; Fletcher et al. 2011; Fletcher Jr et al. 2013; Chiu and
Westveld 2011). Hence, finding the conditions under which the LSM reduces prediction error also
may affect future use of the LSM.

The LSM has seen a substantial amount of subsequent development and extension. The latent
space has been represented as a k-dimensional Euclildean space and by latent factors (Hoff, Raftery
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and Handcock 2002; Hoff 2009). Additional structure has been introduced by adding random ef-
fects, which, for example, may involve sender or receiver specific effects for directed networks
which capture differential activity rates amongst nodes (Hoff 2003). Within this framework West-
veld and Hoff (2011) models dynamic network data by treating the latent space as a stochastic
process. Handcock, Raftery and Tantrum (2007) enable the LSM to model clustering that is not
representable as homophily (i.e., stochastic equivalence) by combining the LSM with latent cluster
models. Hoff (2008) shows that the LSM and latent cluster models are special cases of an “eigen-
model.” That is, an eigendecomposition of a symmetric sociomatrix can be used to represent both
latent space and cluster models, but not vice-versa. Most of these developments have represented
new forms for the latent space and/or the further development of the LSM as a Bayesian hierarchi-
cal model. In the next section we propose an approach to specifying the Bayesian prior in order to
improve inference regarding covariate parameters.

3 Bayesian Inference and Priors in the Latent Space Model

Maximum likelihood estimation (MLE) is problematic in the LSM since the value of the like-
lihood function is invariant to rotation of the latent space (Hoff, Raftery and Handcock 2002) (i.e.,
only the distances between points matter; not their absolute positions), which means that the ML
estimate is unidentified. As such, inference in the LSM is conducted using a Bayesian approach.
Latent positions and other parameters are sampled using a Metropolis-Hastings algorithm. After
sampling, latent space positions are rotated to match a common set of positions, via Procrustes
transformation (Borg and Groenen 2005), in order to eliminate variance due to rotation of the la-
tent space. Hoff, Raftery and Handcock (2002) propose the use of diffuse independent normal
priors for the latent positions and regression parameters. They also recognize the fact that isolates’
(i.e., nodes with no ties) finite positions are only identified through the prior in the LSM. In one
application they actually just exclude the isolates. Excluding isolates seems fine if the inferential
purpose is to estimate positions in the latent space, but for representative explanatory analyses ex-
cluding isolates would amount to selecting on the dependent variable. Unlike in many practical
applications of Bayesian inference, it is not possible to use an improper “flat” prior (Tibshirani
1989) with the LSM, as an informative prior is necessary to assure finite latent positions. Since
it is necessary to use an informative prior with the LSM, we ask whether it is possible to specify
the prior in a way that improves inference regarding covariate parameters. We propose to calibrate
the prior to be on a scale comparable to the linear predictor estimated from a GLM. This scaling
should discourage the latent space from replicating the linear predictor, encouraging the discovery
of structure that remains in the data after identifying the effects of measured covariates.

To derive our scaling rule, we follow the thought experiment of a one-dimensional latent space
z with a dyadic covariate x. If we assume that the z are independent and distributed N (0, σ2),
it is straightforward to derive the distribution of |zi − zj |.2 Since it is a special case of a “normal

2The assumption that z ∼ N (0, σ2) is consistent with z being drawn from the prior that is conventionally used in
the LSM.
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difference distribution”, we know that zi−zj ∼ N (0, 2σ2) (Devore and Berk 2012). The normality
of zi − zj implies that |zi − zj | has a folded normal distribution (Leone, Nelson and Nottingham
1961). Following from this result, we know that the variance of |zi − zj | is

σ2(2− 4/π).

Let θ2 be the empirical variance of x. Then the variance in the linear predictor is β2θ2. Given
an estimate β̂, we can set the variance of the latent space prior to a multiple of β̂2θ2/(2 − 4/π)
in order to tune the prior to avoid replicating the linear predictor via the distances between latent
coordinates.

3.1 Simulation Study

We use a simulation study to evaluate the LSM’s performance at inferring covariate parameters
in the situation in which we have some observed covariates as well as omitted network structure
which can be represented using a Euclidean latent space. We are particularly interested in whether
the LSM can adjust for confounding when the confounding variable is unmeasured. In the simula-
tion design, we study how the level of confounding affects the performance of the LSM relative to
the GLM. We evaluate performance in terms of bias, inferential error, and prediction.

3.2 Simulation Setup

For simplicity and computational efficiency we consider a unidimensional latent space. We
have no reason to suspect that our results should be unique to unidimensional LSMs. To generate
an observed covariate which has a controllable collinearity with the latent network structure we
follow a three-step process. First, we simulate unidimensional positions for each node, drawing
from a normal distribution, and calculate the Euclidean distance d between each pair of positions.
Second, given a target covariance matrix (Σ) among the covariates and distances, 〈x,d〉, we derive
the conditional mean vector and covariance, assuming that x has a normal distribution given d
(see (Eaton 1983, pp. 116–117) for the conditional normal derivation). Third, we simulate x
as a normal random variable with the respective conditional means and covariance. Finally we
standardize x to have zero mean and unit variance. To generate the covariance matrix Σ which
controls the dependence between the omitted network structure and the observed covariate x we
utilize the C-vine method of Lewandowski, Kurowicka and Joe (2009).

We consider three exponential family distributions from which the adjacency matrix entries
are drawn: Gaussian, binomial, and Poisson. Additionally we control the number of nodes in the
network n = 25, 50, 100. To vary the degree of confounding attributable to the latent positions, we
consider three values of the collinearity parameter η, 1, 100, and 1, 000, 000, where 1 corresponds
to a standard uniform distribution of the correlation (i.e., moderate collinearity) between the ob-
served covariate and the latent distances, and 1, 000, 000 to independence between the observed
covariate and the latent distances. See Figure 1 for the distribution of the absolute value of the
correlation generated at each value of η.
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Figure 1: The distribution of the absolute value of the correlation between the observed covariate
and the latent distances.

We consider the LSM with several different priors on the coefficient for the observed covariate
and the latent space. We set the prior variance of β to be either 1 or 10 and alternatively use a
diffuse normal prior on the latent space or scale it by β̂2θ2/(2 − 4/π), where θ2 is the empirical
variance of x.

The LSM is estimated using the canonical implementation in the latentnet package in R
(Krivitsky and Handcock 2008). An initial run of 10,000 burn in iterations, followed by 1,000,000
iterations of the sampler. Every 100th iteration is saved. Convergence in the log probability of the
model is assessed using the Geweke diagnostic in the coda package (Plummer, Best, Cowles and
Vines 2006; Geweke et al. 1991). If the convergence criterion is satisfied the simulation continues
to the next set of arguments, otherwise the number of iterations is doubled. If the convergence
criteria is still not satisfied, then the aforementioned step in the simulation is flagged for review. At
each point in the simulation’s parameter space, we execute 1,000 Monte Carlo iterations. 3

We compute the MLE estimated by iteratively reweighted least squares via the glm function
in R (R Core Team 2015). For the LSM we use the posterior mode as our point estimate. In the
cases where edges are binomial and there is omitted network structure, we scale the estimates using

the reciprocal of the bias of β when x and d are independent:
√

3.28+β2Var(d)
3.29 , where 3.29 is the

variance of a standard logistic distribution. We do this to adjust for bias in the coefficient estimate
that arises due to the lack of a scale coefficient in logistic regression (See the derivation of the bias
under an independent but omitted covariate in Mood (2010)).

For each combination of simulation conditions we evaluate the mean square prediction error of
the model on new edges drawn condtional on x and d, the bias of the estimated coefficient for the

3One of the primary difficulties in executing the above simulation design is the computational cost of estimating the
LSM. We utilize the BatchExperiments R package to construct and execute our computational experiments on a
Torque cluster Bischl, Lang, Mersmann, Weihs et al. (2015).
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measured covariate, and the Type-1 and 2 error rates. Inference regarding Credible intervals for
β are defined by using the region of highest posterior density which covers 95% of the marginal
posterior distribution Turkkan and Pham-Gia (1993). We consider β to be statistically significant
at the 0.05 level if the credible interval does not contain 0.

3.3 Results

To evaluate estimation error we compute the bias. Figures 2 and 3 shows the results. In Figure
?? we can see that with a uniform distribution over the correlation between the distances and
the observed covariate, all methods (except the true model wherein the distances are treated as
observed) show substantial bias. In most cases the LSM performs better than the GLM, sometimes
by as much as 50%. However, in absolute terms the amount of bias is large. Our results demonstrate
that using the LSM will not permit the discovery of and adjustment for the true latent positions. For
both the GLM and the LSM, bias decays rapidly as the degree of correlation between the distances
and the measured covariate decreases. In 3 we can see that when there is no ommitted network
structure, the LSM exhibits bias greater than that of the GLM, though it does appear that scaling
the prior of the latent positions to match the scale of the linear predictor decreases this tendency.

Figures 4 and 5 show the inferential error rates of the LSM with different priors for β and the
latent positions, as well as a GLM. Type-1 error rates shown in Figure 4 for the LSM are in general
lower than those of a GLM when an unmeasured covariate exists. Under uniform correlation
between the omitted network structure and the observed covariate the Type-1 error rate is often
more than 10 times greater than the nominal rate of 0.05. Again, scaling the prior of the latent space
to match that of the observed covariate appears to make the LSM’s error rate comparable to that of
the GLM. Type-2 error rates, shown in Figure 5 are also substantially above their nominal rate when
there is a uniform distribution on the strength of confounding, though the inflation is not as bad as
that of the Type-1 rates. These results indicate that, in the presence of unobserved confounders that
can be represented through the LSM, the LSM does not adequately correct the inferential errors
that would arise due to omitted variables in the conventional regression framework.

We estimate generalization error as the expected prediction error on new edges generated using
a fixed set of latent positions for the nodes and a fixed observed covariate. Generalization error
results are shown in Figure 6. In nearly all cases the LSM substantially outperforms the GLM,
especially when the omitted covariate is not highly collinear with the observed covariate. In nearly
all cases it performs as well as the true model.

4 Conclusion

Based on our simulation study, the primary advantage of the LSM is that the latent space
provides an efficient complement to observed covariates when it comes to fitting and predicting
the network. Considering both (1) that the LSM does not substantially reduce bias or inferential
error relative to the GLM, and (2) that the LSM exhibits strong predictive performance, we infer
that the latent positions are fit to explain the systematic variation that cannot be explained through
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Figure 2: The bias of estimates of the effect of the observed covariate x when there is an ommitted
variable. The x-axis gives the value of the parameter η which controls the degree of dependence
between x and ommitted covariate. Lower values of η indicate higher levels of dependence between
the observed and ommitted covariate. The y-axis gives a Monte Carlo estimate of the bias. The
number of nodes are indicated in the top panels, while the distributional family of the edges is
shown on the right panel. Each panel represents 4 values of η with 1,000 Monte Carlo iterations
executed at each point.
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Figure 3: The bias of estimates of the effect of the observed covariate x when there is no ommitted
variable.

10



Figure 4: Monte Carlo estimates of the Type-1 error regarding the effect of the observed covariate
x are shown on the y-axis. Here, β = 0 and the error rate shown in each panel in that row gives 1
minus the probability of a 95% confidence region (for the LSM) or interval (for the GLM) including
0, giving the probability that a true null hypothesis of β = 0 is falsely rejected.
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Figure 5: Monte Carlo estimates of the Type-2 error regarding the effect of the observed covariate
x are shown on the y − axis. Here, β = 1, and the error rate shown in each panel in each row
gives the probability of the probability/confidence intervals covering 0, giving the probability of
accepting a false null hypothesis.
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Figure 6: The x-axis shows a Monte Carlo estimate of the mean square error for edge values
drawn from the appropriate distribution with the observed covariate x and the latent positions z
fixed. In the binomial case the Brier score is computed and in the poisson and normal cases the
mean-square-error.
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the observed covariates. This is of considerable use in research focused on developing a predictive
model, or fitting and exploring latent positions. However, since the latent positions are inferred
to complement the observed covariates—explaining residual variation—the LSM is ill-suited to
adjust for confounding network structure, as adjusting for confounding would require that the latent
positions explain variation that could otherwise be attributed to the observed covariates.

We conclude that the primary reason for using the LSM or one of its many variants, rather
than a GLM, should be interest in using the latent space model without covariates to explore latent
structure in the network through a principled approach to embedding, or the prediction of edges in
networks where there is likely to be omitted structure that is not adequately modeled using observed
covariates. Although inferential and estimation errors are somewhat smaller than that of a GLM
when there is omitted network structure, even moderate collinearity between the omitted structure
and the measured covariate leads to substantial bias and inferential error. The LSM cannot control
for unmeasured confounders. Furthermore, if such network structure does not exist, the LSM may
induce additional bias and inferential error, though this effect can be moderated by scaling the prior
on the latent positions to match that of the measured covariates. If the researcher is interested in
identifying causal effects of observed covariates, but is concerned that unmeasured variables or
network structure could confound the relationship between observed variables and the network,
the LSM does not represent an advisable alternative to measuring the confounding variables and/or
explicitly modeling the endogenous network structure.
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