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Enhancing Validity in Observational Settings When
Replication is Not Possible*

CHRISTOPHER J. FARISS AND ZACHARY M. JONES

We argue that political sciexntists can provide additional evidence for the predictive
validity of observational and quasi-experimental research designs by minimizing the
expected prediction error or generalization error of their empirical models. For obser-

vational and quasi-experimental data not generated by a stochastic mechanism under the
researcher’s control, the reproduction of statistical analyses is possible but replication of the
data-generating procedures is not. Estimating the generalization error of a model for this type
of data and then adjusting the model to minimize this estimate—regularization—provides
evidence for the predictive validity of the study by decreasing the risk of overfitting. Estimating
generalization error also allows for model comparisons that highlight underfitting: when a
model generalizes poorly due to missing systematic features of the data-generating process.
Thus, minimizing generalization error provides a principled method for modeling relationships
between variables that are measured but whose relationships with the outcome(s) are left
unspecified by a deductively valid theory. Overall, the minimization of generalization error is
important because it quantifies the expected reliability of predictions in a way that is similar to
external validity, consequently increasing the validity of the study’s conclusions.

Replication is explicitly focused on generating evidence in support of the external validity
of an inference and involves taking a new draw from the same data-generating process
used to generate the original data set by repeating the procedures specified by the research

design. Unfortunately, this type of exact replication1 is not possible in observational and quasi-
experimental settings when the data-generating process is not controlled by the researcher. As we
argue in this article, however, evidence regarding the reliability of predictions, generalization
error, is similar to external validity, and is thus important for conclusion validity.2 Within the
framework developed by Shmueli (2010), we suggest that predictive validity should be especially
important in exploratory and predictive data analyses wherein the theoretical relationships of
interest are not causally identified. We additionally suggest that in explanatory analyses where a
relationship is causally identified, analysis of predictive validity can contextualize effect size(s)
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1 We make a distinction between an exact replication and a conceptual replication. An exact replication uses the same
protocol with theoretically identical and practically similar subjects, settings, treatment variables, and outcome variables.
A conceptual replication might change one or more of these components of the design. Both types of replications, in
addition to reproduction, are useful starting points for new research depending on the goals of the researcher.

2 See Vapnik (1998) for a discussion of statistical learning theory, which is the theoretical investigation of the
ability of algorithms which build models from data to accurately generalize to unseen data.
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(i.e., by estimating predictive importance) and provide information about how the effect varies
(Jones and Linder 2016; Athey and Imbens 2015; Wager and Athey 2015).3

In brief, generalization error is an unobserved measure of the accuracy of predictions from a
model. Minimizing generalization error requires the estimation of this unknown quantity and
adjustment of the model to minimize it. Generalization error provides information about the validity of
the study in a manner similar to exact replication of a data-generating process, which provides direct
evidence about the reliability of an estimate. Normal practice is to minimize prediction error on the
data at hand. We instead advocate the minimization of expected prediction error: generalization error.4

Minimizing generalization error also provides a principled method for modeling complex
empirical relationships because the functional form that links outcomes and explanatory
variables in an empirical model is often, perhaps usually, not fully specified by the theory. That
is, it is possible to increase the predictive validity (decrease the generalization error) of a model
by only constraining the empirical model in ways specified by the theory, and adopting a more
flexible approach for other parts of the model. Relatedly, generalization error also provides a
method of model selection. Although it will not always be the case that the relevant summary of
the model is generalization error, it provides a default which at least maximizes a notion of
predictive validity, which, absent a basis on which to make causal claims, may be desirable.

In the remainder of this paper, we first consider and define generalization error, external
validity, replication, reproduction, and the relationship between these concepts. We then discuss
generalization error, its estimation, and techniques for adjusting models to minimize it. We
close with a discussion of future directions for research.

GENERALIZATION, EXTERNAL VALIDITY, REPLICATION, AND REPRODUCTION

In this article, we focus on techniques for generating evidence in support of the generalizability
of an empirical model of a data-generating process, which is a function mapping explanatory
variables to outcomes estimated from data which describes how the data could have arisen. We
argue that generalization is similar to external validity, which can be supported by replication, but
which is not possible in cases where the process generating the data is not under researcher control.

Though the terms generalizability and external validity are often used synonymously with
one another, the statistical learning community defines generalizability differently than how
Shadish (2010) defines external validity.5 Generalization in the statistical learning sense refers
to the transportability of a learned function (i.e., one estimated from data) to other draws from
the same data-generating process, and is focused explicitly on prediction. A learned function
that generalizes well has low prediction error on new data from the same generating process.
Generalization error is not an estimate of the validity of cause–effect relationships (internal
validity), which may or may not be plausibly causally identified in a model fit to observational
or quasi-experimental data (see e.g., Dunning 2012; Keele 2015; Keele and Titiunik 2015
for more general discussions of causal identification in the social sciences).6 Neither is

3 In Shmueli’s (2010) framework, exploratory analyses are those in which causal relationships are not
identified but the relationships between the explanatory variables and the outcomes are investigated. Predictive
analyses, naturally, are those in which predictions are of primary interest: for example, forecasting. Explanatory
analyses are those in which causal relationships are arguably identified, and accurate estimation of these rela-
tionships is of primary interest.

4 Although the expected loss is often used, it need not be the only choice.
5 For more on validity generally, see Shadish, Cook and Campbell (2001).
6 Providing evidence for the internal validity of research design is a topic that we do not consider further in

this paper but again see (Dunning 2012; Keele 2015; Keele and Titiunik 2015).
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generalizability in this sense external validity, since the latter pertains explicitly to the
generalizability of cause–effect relationships learned from data.

Shadish defines external validity as the “validity of inferences about whether the cause-effect
relationship holds over variation in persons, settings, treatment variables, and measurement
variables” or outcome variables (2010, 4). These components make up a theoretically specified
data-generating process and are linked together by a set of assumptions (premises or postulates)
and a set of propositions. These assumptions and propositions link the treatment or causal
variable (X) to a measurement or outcome variable (Y) within a specified empirical domain. The
domain within which the theory explains the relationship between the treatment and outcome
variables is bounded by scope conditions. The scope conditions of a theory are auxiliary
assumptions, specifically regarding the attributes of the persons (i.e., the units) and the settings
within which the persons reside (i.e., the spatial and temporal information). This auxiliary
information is important because a data-generating process might change systematically for
different types of persons or units (e.g., Brady 1986; Wilcox, Sigleman and Cook 1989; King
et al. 2004), or across time or between places (e.g., Western 1998; Bailey 2007; Fariss 2014).

If theoretical differences between data-generating processes are not recognized and specified
in the empirical model (e.g., by including important covariates capturing structural change) of
said data-generating process then any predictions from the model will be biased (see e.g., Fariss
2014; Fariss Forthcoming, for a discussion of this issue as it relates to the study of human
rights).7 Thus, the scope conditions of the theory provide important information about the
conditions that must be met in order for the model of the data-generating process to be a valid
representation of the theory (e.g., Adcock and Collier 2001; Lake 2013; Elkins and Sides 2014;
Fariss 2014). To reiterate, generalizability or generalization error is an estimate of the ability of
a model to generate accurate predictions on new data from a data-generating process. In
practice, what distinguishes one data-generating process from another is the scope or the
domain of the theory (e.g., Lake 2013).8 The importance of specifying the scope conditions of a
theory is essential because multiple and related data-generating processes may be operating on
different units or across different spatial or temporal settings. The generalization error of a
model provides important information about how well the learned function generalizes to the
data-generating process under study but not necessarily any other data-generating processes.
Stated differently, generalization error does not necessarily provide information about the
performance of a model on a sample drawn from a different population or using different
treatment or outcome variables, except insofar as a different populations or measurements are
similar to the process that generated the data used to fit the model (Bareinboim and Pearl 2012).
In this way the definition of generalization error is analogous to exact replication because
neither generalization error nor exact replication pertain to the transportability of a model of one
data-generating process to another, but both pertain to the reliability of estimates: predictions
and treatment effects, respectively.

Shadish (2010) makes a similar point about the external validity of causal inferences: exact
replication provides evidence for the external validity of an inference only when the sample
(i.e., the persons or settings) and the explanatory variables (i.e., the component parts of a

7 Fariss (2014) demonstrates that human rights respect has actually been improving over the last 35 years.
However, the standards used by monitoring groups to assess human rights practices have also become more strict
over time. This contemporaneous change to the data-generating process has masked the positive trend in human
rights respect.

8 Lake (2013) emphasizes the importance of midlevel theorizing in the study world politics. In other words,
Lake (2013) suggests that researchers pay close attention to the scope conditions for the theories or data-
generating processes of specific research topics.
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theoretically specified data-generating process) are fixed or at least probabilistically equivalent
once accounting for measurement error. However, the external validity of a causal inference can
also be enhanced by varying one or more of these components of the research design (i.e., a
conceptual replication).9 Thus, the definition of generalization error is not analogous to
conceptual replication. With these important distinctions in mind, we now turn to a discussion
of the distinctions between reproduction and the different types of replication and how these
concepts are related to external validity and generalization.

As previously noted, we define replication as taking a new draw from the same data-
generating process used to generate the original data. This is distinct from reproduction, which
entails reproducing the same findings given the same data and statistical analysis procedure.
Reproduction represents a minimal standard of transparency for scientific research and is the
concept commonly referred to as the broader “replication standard” in political science
(Herrnson 1995; King 1995; King 2006; Dafoe 2014).10 To replicate an experimental design, a
researcher might conduct a new experiment and attempt to find the same treatment effect(s) with
a new sample drawn from the same target population of interest (i.e., an exact replication).
A study based on survey data could be replicated by surveying a new set of individuals from the
same target population and then conducting the same statistical analysis on the new sample (i.e.,
an exact replication). If the empirical relationships in these examples are generalizable to the
population from which the new samples are drawn, then similar findings will be obtained,
subject to the uncertainty due to sampling. Thus, exact replication, unlike reproduction,
provides evidence of the external validity of a specific empirical relationship. Reproduction,
though essential for the transparency of scientific research, does not provide evidence about the
external validity of an empirical study.

When data are not generated by a process controlled by the researcher—replication in the
sense described above is not possible (Berk 2004). If researchers view a data set as the result of
a stochastic process,11 however, it is still possible to estimate how generalizable the model’s
predictions are to new observations from the same data-generating process. Even quasi-
experimental designs with strong evidence of internal validity are not replicable based on the
definitions used above, as they take advantage of a unique exogenous shock to the social or
political systems of interest (see Shadish, Cook and Campbell 2001; Dunning 2012; Keele and
Titiunik 2015). Thus, the techniques we discuss next can be used to provide evidence for the
generalizability of predictions drawn from both observational and quasi-experimental designs in
a way that is distinct from but related to the goal of exact replication.

OVERFITTING AND UNDERFITTING

If the generalization error of a model is high, the predictions and substantive interpretation of
the model are potentially unreliable. Whether or not the generalization error of a model is high,

9 Bareinboim and Pearl (2012) develop a theory and algorithm of transportability. The algorithm is designed
to identify conditions under which a causal relationship learned from an experiment can be reused in a different
observational setting. This algorithmic approach is consistent with the goal of a conceptual replication in which
one or more of the components of the research design is altered.

10 See King (1995) and King (2006) for earlier discussion of the replication standard in political science and
see Jones (2013) for a recent perspective on reproduction. Note also that ‘secondary research’ as defined by
Herrnson (1995) may not be clearly replication or reproduction, that is, this typology is not exhaustive.

11 In the examples that follow, the processes are all strictly stationary. However, the assumptions made about
the data-generating process need not necessarily be so strong. In many cases weaker assumptions are enough to
obtain theoretical results (see e.g., McDonald, Shalizi and Schervish 2012).

4 FARISS AND JONES

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/psrm.2017.5
Downloaded from https:/www.cambridge.org/core. Pennsylvania State University, on 12 Apr 2017 at 17:57:53, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/psrm.2017.5
https:/www.cambridge.org/core


however, is not made apparent by looking at the prediction error on the data used for fitting the
model because of the possibility of underfitting and overfitting.

Overfitting occurs when non-systematic variation—noise—is described by an empirical
model, instead of systematic variation—signal. An overfit model, by definition, has high
generalization error. As is commonly recognized, it is generally the case that a model will fit the
data used for estimation much more closely than data not used for estimation. A variety of
procedures have been developed to prevent such overfitting, but the use of these tools is not yet
common practice in political science (though see e.g., Beck, King and Zeng 2000; Ward,
Greenhill and Bakke 2010; Hainmueller and Hazlett 2014; Kenkel and Signorino 2013; Hill and
Jones 2014, e.g., of articles which (at least implicitly) discuss this problem).

Underfitting, a related problem, occurs when a model does not detect systematic patterns in the
data, which results in higher generalization error than could have otherwise been obtained.
Flexible methods—particularly non-parametric and semi-parametric methods—are attractive
alternatives to restrictive parametric models because of their ability to find systematic patterns in
the data that were not expected by theory (i.e., features of the data not directly encoded in the
model) but which are generalizable (i.e., are systematic features of the data-generating process).
The increased flexibility of such models decreases the error on the data to which the model was fit
(the error on the training data), and, perhaps, across all possible data sets that could have been
obtained from a specific data-generating process. In general, however, the capacity of a method to
overfit the data used for estimation increases with its flexibility. What this means in practice is that
finding the best method in terms of generalization error involves balancing the tradeoff between
flexibility and the risk of overfitting, which, to foreshadow the next section, is a tradeoff between
bias and variance. Repeated estimation of generalization error is used to make this tradeoff.

Though any estimators of generalization error could be used (e.g., adjusted R2), off-the-shelf
estimators are not necessarily the best choice. That is, reliance on one of these estimators may
result in unnecessarily high generalization error for a learned function, and thus invalid model
selection or misleading substantive interpretation. We suggest the use of resampling estimators,
which are often better suited to this task since they rely on weaker assumptions. However,
devising a reasonable estimator with complex or dependent data-generating processes may
sometimes be difficult, which we believe is a important and promising area of research and an
issue we discuss briefly at the close of the next section.

FINDING BALANCE BETWEEN OVERFITTING AND UNDERFITTING

In order to further elucidate the tradeoff between bias and variance—finding the right balance
between the risk of overfitting and underfitting—we provide a formal exposition, which
motivates a pair of Monte Carlo examples.

Prediction error is measured by a loss function l. A loss function measures the discrepancy or
contrast between the observed and predicted outcomes and is a non-negative real-valued
function (i.e., a function that takes as input pairs of numbers: a prediction and an observation,
and returns one number that is greater than or equal to 0). For this example, our loss function
is the familiar squared error loss function minimized by ordinary least squares regression.
We decompose the expectation of this particular loss function, the risk, to highlight the
bias–variance tradeoff, which allows us to find the model with the lowest generalization error
among the class of models considered.

Here, we consider a random variables ðX; YÞ � PX ´Y distributed according to a joint
distribution P. X and Y represent the input spaces of the random variables X and Y,
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respectively, with P a probability distribution over ordered pairs drawn from the set of possible
combinations of draws from these spaces: X ´Y. A finite sample of data from P of length n is
denoted Dn and is composed of ordered pairs (xi, yi), ∀ i = (1,… , n) (xi is often a vector). We
denote the expected loss, that is, the average loss over the joint distribution, by R and refer to it
as the risk. The empirical loss, that is, the sample average loss, is denoted by R̂n and is referred
to as the empirical risk.

For the aforementioned squared error loss function, the prediction function which has the
minimum risk is the conditional expectation: f � : x ! EYðY jX = xÞ. The risk of this optimal
prediction function f * is the variance of Y at a particular value of X (the subscript x may be
dropped if Y is homoscedastic).

Rðf �Þ=EY Y�f �ðxÞð Þ2jX = x
h i

= σ2x :

This is referred to as the Bayes risk: the function which makes the risk (expected loss) minimal.
If this function ( f *) mapping X to Y were known, then the only error that would be made in
predictions is due to irreducible variability in Y. Note that the mapping between X and Y is not
random. When f * is not known and Dn is finite (i.e., there is a finite amount of sample data),
then this error rate (the Bayes error rate) cannot be achieved.

However, with a sample Dn drawn from P, f̂ , an approximation to f * can be estimated or
learned. We can compute the risk of the estimated function f̂ as well, which is necessarily larger
than the risk of f * since f * is not known and because Dn is finite and thus not perfectly
representative of P. If F is the set of functions that can possibly be learned from Dn (e.g., a real
two-dimensional additive function, i.e., linear regression with two explanatory variables), then
the function in this class (F ) which minimizes the empirical risk, that is, the sample average
loss, is frequently chosen. This does not necessarily minimize the expected loss (the risk),
however.

As previously noted f̂ is estimated from Dn, the finite set of data used for fitting drawn from
P, the data-generating process. In the special case where Y =R (i.e., the set of possible values
for Y is the real line: regression) and the loss function is the common squared error function, the
risk of the estimated function f̂ can be written as a sum of irreducible error, the squared bias of
f̂ , and the variance of f̂ .

Rðf̂ j X = xÞ= EY ðf̂ ðxÞ�YÞ2
h i

=EY f̂ ðxÞ�EY f̂ ðxÞ� �� �2h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Varðf̂ ðxÞÞ

+ EY f̂ ðxÞ� ��f �ðxÞ� �2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Biasðf̂ ðxÞÞ2

+ σ2x|{z}
VarðY jX = xÞ

:

The “excess” risk, that is, the error that is not due to irreducible randomness, is Rðf̂ Þ�Rðf �Þ, the
difference between the risk of the estimated function and the risk of the true function, the Bayes
risk, which is the variance of Y conditional on a particular value of X = x. The resulting
expression for the excess risk is Biasðf̂ Þ2 +Varðf̂ Þ which, again, is the prediction error not due
to irreducible randomness in Y. Bias is the difference between the expectation of f̂ at X = x and
f * at X = x. Note that the bias is not the difference between f̂ and Y at X = x, which also
contains irreducible error of Y, but instead the expected difference between f̂ and f *. Varðf̂ Þ
measures the variability in f̂ that comes from random variation in the training data (i.e., data
from PX ´Y that could have been obtained but were not).

Minimizing the risk of f̂ , Rðf̂ Þ, thus involves minimizing both bias and variance, which, as
previously mentioned, involves a tradeoff. Bias can be decreased by allowing the model to more
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closely fit the data, but decreasing bias by increasing a model’s flexibility also increases the
model’s variance, as the model is more sensitive to random components of the data.12 The
tradeoff between bias and variance is not usually 1:1, however, so it often makes sense to
increase one to lower the other. Finding the optimal tradeoff requires minimizing excess risk
(generalization error minus the irreducible error in Y), Rðf̂ Þ�Rðf �Þ. This is the same as mini-
mizing generalization error since the irreducible randomness in Y is assumed to have expec-
tation 0. Figure 1 shows this tradeoff graphically with a simulated example (further details are
shown in Table 1). Figure 2 gives another example of the bias–variance tradeoff in action with
boosted regression.

Fig. 1. Here Y = sin(X)+ є, where X ~U(−5, 5) and ϵ � Nð0; 1Þ
Note: The blue line shows the Monte Carlo estimate of E½Y jX = x� across (x, y) drawn from the data-
generating process. The red lines in each panel indicate the fit of the model to a particular sample. Each
sample has 100 observations and the process is repeated 1000 times (75 randomly drawn examples shown in
the figure). The linear case (fit by ordinary least squares) on the top left panel clearly underfits (the bias is
high), though this estimator for f * has the lowest variance. The top-right panel shows a linear model with a
degree 3 orthogonal polynomial expansion of x, which has much lower bias but a higher variance. The
bottom left shows a linear model with a degree 10 orthogonal polynomial. The bias is smaller but the
variance has increased relative to the top two panels due to overfitting. The model shown in the bottom right
introduces a penalty term (a scalar λ) multiplied by the sum of the absolute values of the coefficients (the L1
norm of the coefficient vector), where λ is estimated by finding the value which minimizes an estimate of the
generalization error using 10-fold cross-validation (Efron et al. 2004; see also Kenkel and Signorino 2013 for
a similar approach). This substantially reduces the variance of the predictions at the cost of a relatively small
amount bias, producing a fit similar to that in the upper right. This fit has the smallest risk or generalization
error. Table 1 gives further details.

12 This assumes a fixed sample size. Having more data for a fixed level of model complexity would decrease
variance.
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Flexible methods are desirable because they minimize bias, and simple methods are desirable
because they have lower variance, both of which are components of excess risk. Regularization
methods (e.g., the lower-right panel of Figure 1) penalize the complexity of a model in a manner
that aims to minimize generalization error by making an optimal tradeoff between bias and
variance: allowing a model to adapt to the data but not so much so that it overfits. Many of these
regularization methods are heuristic, that is, they are not strictly optimal but they are

TABLE 1 Monte Carlo (1000 Samples) Estimates of the Expected Risk Rðf̂ Þ, Empirical Risk
R̂nðf̂ Þ, Excess Risk Rðf̂ Þ�Rðf �Þ, and the Bayes Risk, R( f *) of Linear Models With
Orthogonal Polynomials of Degree (1, 3, or 10), and a L1 Regularized Linear
Model Fit to Training Samples of Length n = 100 Drawn From Y = sin (X)+ є
Where ϵ � Nð0; 1Þ and X ~U(−5, 5)

Expected Risk Empirical Risk Excess Risk Bayes Risk

Degree 1 1.52 1.48 0.52 1.00
Degree 3 1.22 1.07 0.21 1.00
Degree 10 14.02 0.81 6.61 1.00
Degree 10 (regularized) 1.20 0.97 0.18 1.00

Note: The expected risk is minimized by the regularized linear model. Note also the divergence of the empirical
risk and the expected risk as the degree of the polynomial increases. The regularized model is the most
generalizable in this sense.

Fig. 2. A learning curve for boosted regression trees (Hothorn et al. 2010; Hothorn et al. 2014)
Note: On the x-axis the complexity parameter ν is shown, increasing from left to right (higher is more
complex). ν controls the “learning rate”: how quickly the model adapts to the data. On the y-axis the mean
squared error of a series of fits to independent and identically distributed training data (n = 100). Each fit is
used to predict on the training set and the test set and is averaged over 1000 Monte Carlo iterations. At low
levels of complexity, variance is low and bias is high: the expected and empirical risk is similar. As the
complexity of the model increases, however, the difference between the empirical and expected risk diverges,
with the former decreasing below the Bayes error rate (the theoretical minimum expected risk): overfitting the
data. Minimizing the expected risk prevents overfitting that occurs when the empirical risk is minimized: the
complexity parameter ν which minimizes the expected risk is denoted by the dashed vertical line (ν = 0.08).
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computationally tractable. In the case of linear models, two popular forms of regularization are
ridge regression and the least absolute shrinkage and selection operator (Lasso), both of which
penalize regression coefficients using the size (norm) of the coefficient vector: the sum of the
absolute values of the coefficients (the L1 norm), or the sum of the squares of the coefficients
(the L2 norm) (61–73; Tibshirani 1996; Hastie, Tibshirani and Friedman 2009).13 The function
minimized when using ridge regression on a continuous outcome is shown below.14

β̂= argmin
β

Xn
i= 1

yi �
Xp
j= 1

βjxij

 !2

+ λ
Xp
j= 1

β2j ;

here y denotes a continuous real-valued outcome, p the number of predictors, β the regression
coefficients, and n the number of observations which are assumed independent and centered by
mean deviation (note that we omit an intercept for this reason, the empirical mean of y is 0). The
only addition to the common least squares empirical risk function is the last term, where λ is a
penalty parameter which is multiplied by the sum of the squares of each βj. When this function
is minimized at a particular value of λ, coefficients which are less useful in predicting y are
shrunk toward 0. Thus, when this function is minimized, both the norm of the coefficient vector
and the empirical risk are jointly minimized. This amounts to an application of Occam’s Razor:
simpler solutions (i.e., smaller coefficient vector norms) are to be preferred, all else equal. That
is, the coefficients are shrunk toward 0 if they do not contribute enough to the minimization of
the empirical risk. How quickly shrinkage occurs is determined by the form of the penalty (e.g.,
the L1 or L2 norms of the coefficient vector) as well as the value of λ, which is usually selected
to minimize generalization error (how this selection works is discussed further below).
Parameter shrinkage makes regularized estimators less sensitive to the data (decreases their
variance), which, again, can prevent overfitting.

The empirical risk function minimized when using the Lasso is similar and is shown below.15

Note that the Lasso penalty may result in some elements of β being set of to (exactly) 0, unlike
the ridge penalty.

β̂= argmin
β

Xn
i= 1

yi �
Xp
j= 1

βjxij

 !2

+ λ
Xp
j= 1

jβj j :

The selection of how much to penalize the complexity of a model is an application specific
problem which is usually solved by estimating generalization error at many values of the
penalty parameter(s). This process which is often referred to as tuning or hyperparameter
optimization. Though extensive discussion of this topic is beyond the scope of this paper,
hyperparameter optimization is often much more sophisticated than an exhaustive search over a
finite grid of tuning parameter values (grid search) and hence much more computationally
efficient (see e.g., Bengio 2000; Bergstra and Bengio 2012). The expected risk of a model with
a particular set of hyperparameters (in this case just λ) is often estimated using resampling
methods. Then the value of the hyperparameter(s) which minimizes (or nearly minimizes) the
resampled estimate of the generalization error is used. When data are independent and

13 These penalties can be combined to give the Elastic Net (Zou and Hastie 2005).
14 Ridge regression can be thought of as Bayesian or frequentist procedure (Tibshirani 1996). The Bayesian

equivalent of ridge regression is a model with independent Normal priors on the regression coefficients.
15 Like ridge regression, Lasso regression can be also thought of as Bayesian or frequentist procedures

(Tibshirani 1996). Bayesian Lasso estimates are equivalent to the frequentist analogue under independent double
exponential priors on the regression coefficients (Tibshirani 1996; Park and Casella 2008).
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identically distributed we can use simple nonparametric resampling methods such as k-fold
cross-validation or the bootstrap to estimate the generalization error of a model. Note also that
regularization may be used with far more complex models, we discuss linear regression only
because of its familiarity and simplicity.16

Resampling methods work by treating the data at hand Dn as the data-generating process P,
sampling from Dn, and finding an estimate of f *, f̂ , on each pseudo-sample. The bootstrap, for
example, works by sampling n observations uniformly and with replacement from Dn (Efron
1982): analogous to simple random sampling from P. f̂ is estimated from this pseudo-sample
and an estimate of the risk is obtained by computing the prediction error on the observations
that are not in said psuedo-sample. k-Fold cross-validation is another common resampling
estimator which divides Dn into k randomly selected folds (groups of n

k observations sampled
without replacement). f̂ is learned on k− 1 of the folds, and the risk is estimated by using f̂ to
predict on the kth held out fold. The procedure repeats so that each fold is held out from
estimation of f̂ , and the risk estimates from each iteration are averaged. Many variations on
these two resampling methods are available (see e.g., Efron and Tibshirani 1994; Arlot et al.
2010). Resampling methods are an active area of research, and these simple, well-known
methods may not be the best choice in many situations (see e.g., Bischl et al. 2012 for more
recommendations).

Methods for dependent data are available but require additional assumptions about the
dependence structure of the data-generating process and can be considerably more difficult to
develop and use (Lahiri 2003; Givens and Hoeting 2012). For some sorts of dependent data,
such as some types of time-series data, relatively simple nonparametric resampling methods are
available (e.g., the moving block bootstrap). In other instances, Bayesian hierarchical models
may be most effective (e.g., Tibshirani 1996; Western 1998; Gelman 2003; Gelman 2004; Park
and Casella 2008). In other cases, bounds on generalization error can be estimated by using
structural risk minimization (Vapnik 1998). Discussion of structural risk minimization is
beyond the scope of this paper but this appears to be a promising area of research with
applications to social science data (see e.g., McDonald, Shalizi and Schervish 2012 for recent
work with macroeconomic data). In general the development of methods specific to political
data may be a fruitful area of methodological research.

We emphasize that better estimates of generalization error will naturally result in a more
optimally tuned model which will generalize better (in terms of prediction error). Hence,
estimating generalization error and then adjusting the model to minimize this quantity is a
means to maximize the predictive validity of a model’s predictions in situations where exact
replication is not possible. We now turn to a discussion of how applied researchers might use
our recommendations in future research.

EMPIRICAL VALIDATION OF UNSPECIFIED FUNCTIONAL FORMS AND MODEL SELECTION

It is often the case that the deductively valid theories used to specify models of empirical
relationships in data are underdetermined.17 What we mean by this is that the functional form

16 Decision trees (and ensembles thereof, such as forests and boosting) can be regularized by pruning nodes,
by penalizing the risk function being minimized, and by adjusting numerous other hyperparameters (see e.g.,
Mingers 1989; Hothorn, Hornik and Zeileis 2006). Other models such as splines can be regularized using
assumptions about smoothness or roughness (see e.g., Beck and Jackman 1998; Keele 2008).

17 In this sense many empirical models are not capable of learning (generating valid inferences) about
underlying structure of the data if the theory is not specified to sufficiently constrain the parameter space. Hence,
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that links outcomes and explanatory variables in an empirical model is usually not fully spe-
cified by the theory. We suggest that such models often do worse than they might have
otherwise—in terms of predictive validity—had a more flexible functional form been selected.18

Importantly, the use of predictive validity as a criterion for inference, another way of saying that
there should be a focus on minimizing generalization error, provides a principled (in the sense
that it increases predictive validity) way to use more flexible semiparametric and nonparametric
models in observational and quasi-experimental research design settings. That is, it is possible
to increase the predictive validity of a model by only constraining the empirical model in ways
specified by the theory, and adopting a more flexible approach for other parts of the model. The
use of regularized nonparametric or semiparametric methods (e.g., using methods such as
boosting, generalized additive models, feedforward neural networks, kernel methods, or random
forests, among many others) is often a much better option than an inflexible parametric model
that is not fully implied by the theory.19 Adopting a restrictive functional form where one is not
directly implied is an arbitrary data analytic choice which impedes scientific progress by
obscuring unexpected features of the data, which results in lower predictive validity.

Combining both a strict functional form deduced or encoded from a theory and a more
flexible functional form to capture structure in the data where either the functional form is
unclear or relevant measurements have not been obtained is an active area of research. Stage-
wise methods such as boosting (e.g., “model-based boosting” and generalized additive models)
offer well-developed implementations using well-studied statistical frameworks (Hastie and
Tibshirani 1990; Friedman 2001; Hothorn et al. 2010; Schapire and Freund 2012; Wood and
Wood 2015). It is also possible to combine more restrictive and more flexible functional forms
by specifying latent variable models such as the latent space/factor class of models for networks
(Hoff, Raftery and Handcock 2002; Hoff 2005; Handcock, Raftery and Tantrum 2007; Hoff
2009). Ensembles of models estimated using different explanatory variables and combined by
using a meta/super learner is also an attractive approach commonly referred to as stacking
(Breiman 1996; LeBlanc and Tibshirani 1996). Under certain conditions this approach also
allows the estimation of sampling uncertainty (Sexton and Laake 2009; Mentch and Hooker
2014; Wager, Hastie and Efron 2014). Another alternative approach is to not strictly specify any
parts of the empirical model (i.e., only things like continuity or the maximal depth of inter-
action). Under this most flexible model, the hypothesized relationships can be compared with
what the model learned from the data.

As we have argued above, generalization error can be used to make the optimal tradeoff
between bias and variance. In the above discussion this has been “internal” in the sense that
parameters of a model are found by the iterative minimization of estimates of generalization
error. Generalization error can also be used for “external” model selection (Hastie, Tibshirani
and Friedman 2009; Arlot et al. 2010). This would entail, for example, the comparison of
models developed by different groups of researchers or that embodied different explanations for
the process that generates outcomes. Absent a compelling alternative (such as a statistic which
captures a particular type of structure in the data of theoretical importance), particularly in the

(F’note continued)

regularization can be used to accomplish this important goal and help to solve such ill-posed problems. Ill-posed
problems, as opposed to the well-posed problems, are those in which a unique solution is not determined by the
data. In practice it is often auxiliary assumptions of convenience made about the functional form (e.g., linearity,
additivity) that allow the data to determine a unique solution.

18 Adcock and Collier (2001) label predictive validity as nomological validity.
19 It is also possible to use an iterative process for fitting and predictive checking of a parametric model to

attain a similar level of flexibility (e.g., Gelman 2003; Gelman 2004; Gelman and Shalizi 2012).
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cases we have focused on where the data-generating process is not under researcher control,
preference for models with lower generalization error is arguably validity enhancing.20

We do not suggest that researchers adopt a single method, or even a particular class of methods in
this paper; we simply wish to emphasize that researchers are likely selling their theories short in
terms of predictive power by using overly restrictive models that are underdetermined by theory. We
note that, though most examples are relatively new, the call for more focus on predictive checking is
not new to applied political science research (see e.g., Beck, King and Zeng 2000; Ward, Greenhill
and Bakke 2010; Beger, Dorff and Ward 2014; Hill and Jones 2014; Schnakenberg and Fariss 2014;
Chenoweth and Ulfelder 2015; Douglass 2015; Graham, Gartzke and Fariss 2015). Given the
importance of predictive checking, and the recent discussion of transparency and the replication
standard—we view exact replication as specifically a form of model validation—it is an important
point to re-emphasize here: regularization21 can be used to decrease threats to predictive validity
from over/underfitting an empirical model by focusing on the minimization of generalization error.22

Moreover, “data mining” (i.e., the use of statistical/machine learning techniques), when used in the
principled fashion described here, should not be used as a pejorative term. Instead, such tools should
be adopted to help provide evidence for the predictive validity of observational and quasi-
experimental designs when exact replication is not possible.

CONCLUSION

In areas of political science research where replication is not possible because the theoretically
specified data-generating process is not under the direct control of the researcher (i.e., obser-
vational or quasi-experimental designs), flexible methods used with regularization can be used
to decrease threats to predictive validity from over/underfitting by minimizing generalization
error. This serves a similar function to exact replication in settings where the data-generating
process is under the direct control of the researcher (i.e., an experimental or survey designs). We
believe that this will be of use in exploratory and/or predictive data analyses where causal
relationship(s) of interest are not identified, and, when they are, to contextualize effect sizes and
to study the heterogeneity of the estimated effects.

To review, the estimation of generalization error allows for model comparisons that highlight
underfitting: when a model generalizes poorly due to missing systematic features of the data-
generating process, and overfitting: when a model generalizes poorly due to discovering non-
systematic features of the data used for fitting. Relatedly, the estimation and minimization of
generalization error provides a principled way to use flexible methods which are suitable for
modeling relationships that are left unspecified by a deductively valid theory, which we believe
is common. Lastly, model comparison based on generalization error naturally enhances
predictive validity and can be a useful default when there are not valid alternatives.

20 See Jones and Linder (2016) and Friedman (2001) for work on interpreting flexible models when the
learned relationship(s) between the explanatory variables and outcomes are not directly interpretable, as is often
the case.

21 For examples of applied research in political science that use regularization see Monroe, Colaresi and Quinn
(2008), and Quinn et al. (2010). Note also though that a Bayesian hierarchical model implicitly use regularization
(for more details about Bayesian hierarchical models see Tibshirani 1996; Western 1998; Gelman 2003; Gelman
2004; Park and Casella 2008).

22 One possible response to this is that some social phenomena may be inherently unpredictable, however,
since political scientists have spent relatively little time trying to predict (compared with inference about
parameters), we consider it premature to argue that any particular phenomena is inherently unpredictable, despite
there being some compelling reasons to think that this may be the case in some situations (cf. Gartzke 1999).
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While it would be desirable to provide specific recommendations, we believe that the
diversity of data sources and analytic goals would make such recommendations unsatisfactory.
The relative usefulness of any method depends on properties of the data (e.g., collection
method, dependence structure, measurement error) and the analytic goal (e.g., causal expla-
nation, exploration, prediction), and an application appropriate loss function applied to statistics
such as prediction error, which comport with the analytic goal. However, we believe that within
the framework of Shmueli (2010), there are distinct advantages to fitting flexible, regularized
models, which are reiterated in Table 2.

To close, we wish to emphasize that scholars using any form of observational data or quasi-
experimental data can benefit from the use of that minimize generalization error, which provides
evidence for the predictive validity of empirical models. We have offered a brief introduction to
the reasoning behind this approach, but much of the difficulty for applied political science
research is in the development of appropriate estimators of generalization error for complex
data. Again, we believe this to be a productive area for new research in political science and
political methodology.
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